Publications


Google Scholar


Peer-Reviewed Publications

  1. Chi, E. C., Molstad, A. J., Gao, Z., & Chi, J. T. (2025). The Why and How of Convex Clustering, Accepted at Annual Review of Statistics and Its Application (ARSIA).
  2. Ghorbannia, A., Tanade, C., Yousef, A., Khan, N., Vardhan, M., Chi, J. T., Das, A., Leopold, J., Chi, E. C., & Randles, A. (2025). Physics-Based Machine Learning for Real-Time Assessment of Side-Branch Hemodynamics in Coronary Bifurcation Lesions. International Journal of High Performance Computing Applications, 39(5), 678—691. https://doi.org/10.1177/10943420251351125
  3. Chi, J. T., & Needell, D. (2025). Linear Discriminant Analysis with the Randomized Kaczmarz Method. SIAM Journal on Matrix Analysis and Applications, 46(1), 94–120. https://doi.org/10.1137/23M155493X
  4. Ding, X., Dong, X., McGough, O., Shen, C., Ulichney, A., Xu, R., Swartworth, W., Chi, J. T., & Needell, D. (2022). Population-Based Hierarchical Non-negative Matrix Factorization for Survey Data. Proceedings of the IEEE/ACM International Conference on Big Data Computing, Applications and Technologies: National Symposium for NSF REU Research in Data Science, Systems, and Security, Portland, Oregon, USA, December 6–9, 2022. https://doi.org/10.1109/BDCAT56447.2022.00035
  5. Chi, J. T., & Chi, E. C. (2022). A User-Friendly Computational Framework for Robust Structured Regression with the L_2 Criterion. Journal of Computational and Graphical Statistics, 31(4), 1051–1062. https://doi.org/10.1080/10618600.2022.2035232
  6. Chi, J. T., & Ipsen, I. C. F. (2022). A Projector-Based Approach to Quantifying Total and Excess Uncertainties for Sketched Linear Regression. Information and Inference, 11(3), 1055–1077. https://doi.org/10.1093/imaiai/iaab016
  7. Chi, J. T., Ipsen, I. C. F., Hsiao, T.-H., Lin, C.-H., Wang, L.-S., Lee, W.-P., Lu, T.-P., & Tzeng, J.-Y. (2021). SEAGLE: A Scalable Exact Algorithm for Large-Scale Set-based Gene-Environment Interaction Tests in Biobank Data. Frontiers in Genetics, Section Statistical Genetics and Methodology, 12, 1878. https://doi.org/10.3389/fgene.2021.710055
  8. Chi, J. T., & Ipsen, I. C. F. (2021). Multiplicative Perturbation Bounds for Multivariate Multiple Linear Regression in Schatten p-Norms. Linear Algebra and Its Applications, 624, 87–102. https://doi.org/10.1016/j.laa.2021.03.039
  9. Qin, J., Lee, H., Chi, J. T., Drumetz, L., Chanussot, J., Lou, Y., & Bertozzi, A. L. (2021). Blind Hyperspectral Unmixing Based on Graph Total Variation Regularization. IEEE Transactions on Geoscience and Remote Sensing, 59(4), 3338–3351. https://doi.org/10.1109/TGRS.2020.3020810
  10. Qin, J., Lee, H., Chi, J. T., Chanussot, J., Lou, Y., & Bertozzi, A. L. (2019). Fast Blind Hyperspectral Unmixing based on Graph Laplacian. 2019 IEEE Workshop on Hyperspectral Imaging and Signal Processing (WHISPERS).
  11. Chi, J. T., Chi, E. C., & Baraniuk, R. G. (2016). k-POD: A Method for k-Means Clustering of Missing Data. The American Statistician, 70(1), 91–99. https://doi.org/10.1080/00031305.2015.1086685
  12. Chi, J. T., & Handcock, M. S. (2014). Identifying Sources of Healthcare Underutilization Among California’s Immigrants. Journal of Racial and Ethnic Health Disparities, 1(3), 207–218. https://doi.org/10.1007/s40615-014-0028-0